筋電位とは

筋電位とは生物の筋細胞(筋繊維)が収縮活動するときに発生する活動電位である。

その筋肉内で発生する微弱な電場の変化を縦軸、時間経過を横軸にとった物を筋電図(ElectroMyoGraphy – EMG)という。

筋電位は人間の筋肉の動きを読みとれるため、義手の操作やパワードスーツの操作、リハビリやスポーツ工学などに用いられる。

筋電位を計測する仕組みを筋肉が動作するメカニズムから微弱な電場の取得方法までの流れを以下で説明する。

筋肉の動作のメカニズム

脳から筋活動の指令によって脊髄の中にあるα運動ニューロン興奮状態になる。その時に興奮インパルス神経軸索を通り動作させたい筋肉に伝わる。

右図のように神経軸索は枝分かれをしており、筋肉内部の多数の筋繊維に接続されている。この接合部は神経筋接合部と呼ばれる。

1つの筋繊維には神経筋接合部が1つあり、1つの運動ニューロンに対して筋繊維は複数あることになる。つまり一つの軸索によって複数の筋繊維群がありこれを運動単位と呼ぶ。

次に筋肉の内部構造を右図にしめす。

筋肉は多数の筋繊維によって構成されている。筋繊維は筋肉の細胞であり、1本の筋繊維は10-150[μm]ほどの太さで1-300[mm]ほどの長さである。筋繊維の両端は腱組織になっており骨格や皮膚に付着している。

筋繊維は筋原線維と呼ばれるさらに小さい構造で構成されている。筋原線維内部にはZ膜と呼ばれる膜によって仕切られており、この1区間をサルコメアと呼び筋肉収縮の基本単位である。

サルコメア内部はミオシンアクチンと呼ばれるたんぱく質で構成されており、アクチンフィラメントミオシンフィラメント呼ばれる。

このような二つのフィラメントがお互い滑りこんで近づくことによって収縮が生じる。この収縮のメカニズムは諸説あるが、代表的な説を紹介する。

筋繊維に軸索からの刺激が加わると筋小胞体からカルシウムイオンが放出される。そのカルシウムイオンがトロポニンへの結合を起こし、トロポミオシンと呼ばれるアクチンのミオシン結合部をふさいでいるたんぱく質が変形することによってミオシン頭部とATPの結合が開始する。

右図のようにミオシン頭部は稲穂のような形をしており、アクチンと結合している。トロポミオシンが変形するとATPとミオシン頭部が結合する。するとミオシン頭部の立体構造が変わりアクチンとの結合が外れフィラメントに沿って運動方向に移動する。

その間にATPは分解酵素によってADPリン酸に分解され移動先のアクチンと結合する。

この一連の流れを繰り返し二つのフィラメントがお互い滑りこんで近づくことによって収縮が生じる。

筋電発生のメカニズム

筋繊維は神経線維と同様な興奮性の細胞膜を持っており、興奮に伴い膜電位が変化する。興奮していないとき、細胞内は-80~-90[mV]の電位差をもっており、これを静止電位と呼ぶ。

軸索からの興奮が神経筋接合部に達したとき伝達物質であるアセチルコリン神経末端で放出され筋繊維に伝達される。そして細胞外のナトリウムイオンが細胞内に取り込まれ脱分極が生じる。その結果局所電流が生じ活動電位が発生する。この活動電位は神経筋接合部から腱方向に伝達される。

これは筋繊維一つ一つで生じる現象であり、複数の筋繊維が束なっている筋肉では様々なタイミングでこの活動電位が生じている。そのため筋電図でこれを記録する場、電極に達した時点でのすべての活動電位を合計したものとなる。これを複合活動電位と呼ぶ。

筋肉は複数の筋繊維が束になっている構造をしているが、小さい力を出す場合は一部の筋繊維のみが収縮するため、徐々に力を入れていくと収縮する筋繊維は徐々に数を増し活動電位の数も増す。つまり複数の活動電位を組み合わせた複合活動電位は力の入れ具合によって大きさが増すことになる。

一般に筋電位ではこの複合活動電位を記録する。

筋電センサの仕組みと種類

このように生じる筋電位は皮下の組織を伝導して体表に到達するまでに1/1000以下になっており、体表では数十[μV]~数[mV]程である。

このような非常に小さな電位のためこれを100-10000倍に増幅し計測を行う。

また表面筋電位の周波性成分は5~500[Hz]に分布している。

以下に代表的な筋電計測手段を三つ上げる。

乾式

湿式

針式

弊社の次世代筋電センサMyoScan™

弊社の次世代筋電センサMyoScan™